NATURAL DIHYDROPHENANTHRENE DERIVATIVES FROM TAMUS COMMUNIS

RITA AQUINO, ISABELLA BEHAR, FRANCESCO DE SIMONE, and COSIMO PIZZA

Dipartimento di Chimica delle Sostanze Naturali, Facoltà di Farmacia, Università di Napoli, via L. Rodinò 22, 80138 Napoli, Italy

Several natural nitrogen-free substituted phenanthrenes and 9, 10-dihydrophenanthrenes have been isolated from the Combretaceae (1) and the Dioscoreaceae (2). Some of these phenolic compounds, namely batatasins, are plant growth regulators and dormancyinducing substances (3).

In *Tamus communis* L., a temperate species of the family Dioscoreaceae, a number of phenanthrene derivatives, including batatasin I, have been reported (2-3), but natural substituted 9,10-di-hydrophenanthrenes have not been previously isolated from this species.

We now report the isolation and structural elucidation of two 9,10-dihydrophenanthrenes (1, 2) from the rhizomes of T. communis. The co-occurrence of phenanthrenes and 9, 10-dihydrophenanthrenes may be of interest. So far, only three substituted dihydrophenanthrenes, with structures different from 1 and 2, have been described in two tropical species of the family Dioscoreaceae (4-5). Compound 1 has been synthesized by Letcher and Nhamo (6) but never reported as a naturally occurring product; compound 2 has been isolated previously from an unrelated plant of the Combretaceae family but was described only as the acetate (7).

Furthermore, in the course of our study, we have assigned unambiguously certain nmr signals of the dihydrophenanthrenes using 1 H- and 13 C-nmr spectral techniques.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES. —Spectral data were determined on the following instruments: ¹H nmr and ¹³C nmr, Brücker MW 250 MHz Spectrospin; ei mass spectra, A.E.I. MS-30. Uv spectra were measured in CHCl₃.

Determination of nOe's and decoupling difference experiments were performed on Brüker MW 250 MHz Spectrospin in CDCl₃ with the aid of Aspect 2000 microprograms which allowed direct evaluation of spectra-difference. The samples used for nOe measures were previously degassed by bubbling Ar through the solution for 40 min.

EXTRACTION AND ISOLATION.—The rhizomes of *T. communis*, cut in small pieces, were lyophilized (350 g) and extracted in a glass Soxhlet apparatus for 24 h, successively, with light petroleum (40-70° bp) and CHCl₃. The CHCl₃ extracts were evaporated to dryness to yield 7 g of residue that was chromatographed on a silica gel column with light petroleum (40-70° bp)-EtOAc (7:3) as eluent to give main fractions, A-F.

Each fraction was rechromatographed on preparative silica gel plates in CHCl₃-MeOH (93:7) to afford: from fraction A, Ta I (10 mg) (2,7,8trimethoxy-3, 4-methylenedioxyphenanthrene); from fraction B, Ta IV (15 mg) (7-hydroxy-2,8dimethoxy-3, 4-methylenedioxyphenanthrene) and Ta V (20 mg) (8-hydroxy-2,3,4,7-tetramethoxyphenanthrene); from fraction C, the dihydrophenanthrene 1 (20 mg); from fraction D, Ta VI (7 mg) (7-hydroxy-2,4,6-trimethoxyphenanthrene); from fraction E, the dihydrophenanthrene 2 (15 mg); from fraction F, Ta VIII (27 mg) (4,7-dihydroxy-2,3-dimethoxyphenanthrene); and Ta IX (6 mg) (4,8-dihydroxy-2,3,7trimethoxyphenanthrene).

Compounds 1 and 2 were acetylated with Ac_2O /pyridine (1:1) at room temperature. Compounds 1 and 2 and their acetates (3, 4) were crystallized from EtOH.

DIHYDROPHENANTHRENE DERIVATIVES. —Compound 1: Ms m/z 286 (M⁺, base peak), 271 (M⁺-CH₃), $C_{17}H_{18}O_4$; tlc Rf 0.60 (CHCl₃-MeOH, 93:7; mp 204-207°; uv λ max 278 nm (log ϵ 4.19); ¹H nmr, see reference 6; ¹³C nmr, see Table 1.

Compound **3**: Ms m/z 328 (M⁺), 286 (M⁺-CH₂CO, base peak), 271, C₁₉H₂₀O₅; mp 140-141°; ¹H nmr δ 2.28 (-OAc), 2.72 (4H, broad m, H-9 and H-10), 3.81 (3H, s, -OMe at C-2), 3.88 (6H, s, -OMe at C-6 and C-7), 6.50 (1H, d, J=2.2 Hz, H-3), 6.70 (1H, d, J=2.2 Hz, H-1), 6.72 (1H, s, H-8), 7.50 (1H, s, H-5).

Compound 2: Ms m/z 272 (M⁺, base peak), 257 (M⁺-CH₃) C₁₆H₁₆O₄; tlc Rf 0.42 (CHCl₃-MeOH, 93:7); mp 128-130°; uv λ max 277 nm (log ϵ 4.11); ¹H nmr δ 2.68 (4H, broad m, H-9 and H-10), 3.75 (3H, s, -OMe at C-2), 3.85 (3H, s, -OMe at C-6), 6.35 (1H, d, J=2.2 Hz, H-3), 6.45 (1H, d, J=2.2 Hz, H-1), 6.81 (1H, s, H-8), 7.81 (1H, s, H-5); ¹³C nmr, see Table 1.

Compound 4: Ms m/z 356 (M⁺), 314 (M⁺-CH₂CO), 272 (M⁺-2CH₂CO, base peak), 257; mp 140-142°. ¹H nmr, see reference 7.

PHENANTHRENE DERIVATIVES.—Ta I, Ta IV, Ta V, Ta VI, Ta VIII, and Ta IX (2, 6) were identified by comparison of their experimental derived spectral data with those reported in the literature.

RESULTS AND DISCUSSION

The spectral properties of compound 1 were indicative of a 9,10-dihydrophenanthrene skeleton. Its mass spectrum established its molecular formula as C₁₇H₁₈O₄, its ¹H-nmr spectrum showed a broad multiplet at δ 2.70 characteristic of the benzylic protons of a 9,10-dihydrophenanthrene unsubstituted at C-1 and C-8. Its proton spectrum also contained signals for three methoxy groups, a singlet at δ 7.78 assigned to H-5 (the signal at lowest field in all dihydrophenanthrenes), two metacoupled (J=2.2 Hz) doublets at $\delta 6.31$ (H-3) and 6.41 (H-1), and a singlet at δ 6.74 (H-8). Compound 1 formed a monoacetate 3 with Ac₂ O/pyridine. On acylation, the H-5 signal was shielded appreciably (about 0.3 ppm) while the two doublets at δ 6.31 and 6.41 were deshielded, and the chemical shift of H-8; remained almost unaltered; the -OCH₃ signal at C-2 (δ 3.75) was displaced downfield whereas the signal due

to the other -OCH₃ group (δ 3.88) remained unaffected. This suggested the location of the hydroxyl group at C-4.

Compound 2 formed a diacetate 4 with Ac₂O/pyridine that showed signals, in the ¹H-nmr spectrum, for two methoxy and two acetoxy groups and is similar to 1 except for the absence of one -OCH₃ group. A comparison of the aromatic proton chemical shifts of 1 with 2 suggested that the -OH groups are at C-4 and C-7. Additional evidence on this oxygenation pattern was obtained by nOe difference experiments in the spectrum of 4: irradiation at δ 2.72 led to the enhancements of the H-8 (δ 6.89) and H-1 (δ 6.72) signals, indicating a relationship for these protons, while no detectable effect was observed for the H-3 resonance. In addition, when the -OCH₃ at C-2 (δ 3.78) signal was saturated, a nOe was registered for the H-1 and H-3 (δ 6.54); a nOe effect was also registered for the H-5 (δ 7.59) signal when the -OCH₃ at C-6 (δ 3.82) signal was saturated. The nOe difference experiments in the spectrum of 3 gave similar results: irradiation of δ 2.72, nOe difference for H-8 and H-1; irradiation at δ 3.81, nOe difference for H-1 and H-3; irradiation at δ 3.88, nOe difference for H-8 and H-5. The ¹³C-nmr spectra confirmed the presence of four carbons of the dihydrophenanthrene skeleton attached to oxygen using an unsubstituted dihydrophenanthrene as a model compound and standard substitution effects (Table 1) (8). The positions of the -OCH₃ groups were elucidated by comparison of the 13 C-nmr spectra of 1 and 2: carbon resonances of both compounds appear at essentially the same positions except for C-5, C-6, C-7, and C-8. On going from 2 to 1, C-5, C-6, and C-7 signals are displaced downfield by about 1.1, 2.8, 3.6 ppm, respectively, while C-8 is shielded by 2 ppm. In addition to ordinary measurements, several selective decoupling experiments led us to confirm the ¹H- and ¹³C-nmr assignments.

Carbon								1	2
1				,				107.0	106.9
2								159.1	158.9
3								101.3	101.4
4								153.3	153.3
5								111.5	110.4
6								147.9 ^b	145.1
7								147.7 ^b	144.1
8								112.4	114.4
9								29.4 ^c	31.0 ^b
10								31.0 ^c	29.2 ^b
11								141.3	141.4
12								115.2	115.5
13								131.1	131.8
14								125.4	124.7
-00	CH	Ł	at	С	-2			55.3	55.3
-00	CH	Ĺ	at	С	-6			56.5 ^d	56.4
-00	CH	I,	at	С	-7			56.2 ^d	

TABLE 1. ¹³C-nmr Data for 1 and 2^a

^aSpectra were obtained at 62.9 MHz in Fourier transform mode in CDCl₃ solutions. Chemical shifts are expressed on the TMS scale.

^{b. c. d}Assignments for these signals within a vertical column may be reversed.

The following signal correlations between the ¹H- and ¹³C-nmr spectra of **2** were observed: irradiation of the proton at δ 2.68 showed, in the ¹³C-nmr spectrum, decoupling of the signals at 31.0 and 29.2 ppm (C-9 and C-10); irradiation of the proton at δ 3.75, decoupling of -OCH₃ at C-2 (55.3 ppm); irradiation of the proton at δ 3.85, decoupling of -OCH₃ at C-6 (56.4 ppm); correlations were also observed between the proton at δ 6.35 and C-3 (101.4 ppm) signal, the proton at δ 6.45 and C-1 (106.9 ppm) signal, and the proton at δ 6.81 and C-5 (110.4 ppm) signal. Further selective decoupling experiments in the ¹³C-nmr spectrum of **1** confirmed its ¹H- and ¹³C-nmr assignments.

Thus, **1** has the structure 4-hydroxy-2, 6, 7-trimethoxy-9, 10-dihydrophenanthrene, and **2** is 4,7-dihydroxy-2,6dimethoxy-9, 10-dihydrophenanthrene.

LITERATURE CITED

- R.M. Letcher and L.R.M. Nhamo, J. Chem. Soc. Perkin I. 2941 (1972).
- J. Reisch, M. Bàthory, K. Szendrei, I. Novàk, and E. Minker, *Phytochemistry*. 12, 228 (1973).
- C.R. Ireland, W.W. Schwabe, and D.G. Coursey, *Phytochemistry*, **20**, 1569 (1981).
- 4. K. Rajaraman and S. Rangaswami, *Indian J. Chem.* **13**, 1137 (1975).
- R. Sunder, S. Rangaswami, and G.C.S. Reddy, *Phytochemistry*, 17 1067 (1978).
- R.M. Letcher and L.R.M. Nhamo, Tetrahedron Lett. 48 4869 (1972).
- R.M. Letcher and L.R.M. Nhamo, J. Chem. Soc. (C), 3070 (1971).
- E. Breitmaier, and W. Woelter, ¹³C-NMR Spectroscopy. Verlag Chemie Weinhein, New York, 1978.

Received 3 August 1984